Oblicz : 2/3 + 0,6 = 4,2 - 1cała i 1/9 3,6 - 1 cała 1/2 = 2 całe i 1/3 : 0,8 = 5,2 X 2/7 = 0,6 : 2/3= 2 całe i 3/20 + 1,27 = 0,65 : 6 całych i 1/2 = 4,5 - 3/4 x 1/3 = (1cała i 2/5 + 0,5):2 = 5/8 x 4,2 - (1/4)2 = ta dwójka to jest do kwadratu jak by co .! 4/7 x (0,2 + 1/4)
Odpowiedzi: 3 0 about 12 years ago a) 21/6 / 14/9=21/6*9/14= 9/4 b) 1/2+1/3*2=7/6 c) 2-1/3*1/2-1/2=4/3 d) 3/4+1/8*4/3-1/8=19/24 Luucyxd Skilled Odpowiedzi: 56 0 people got help 0 about 12 years ago Tu masz wszystko karol007 Newbie Odpowiedzi: 10 0 people got help 0 about 12 years ago Dziękuję bardzo asiulkaasia Novice Odpowiedzi: 14 0 people got help Report Reason Reason cannot be empty
Znajdź odpowiedź na Twoje pytanie o oblicz. 2/5 + 3/5 1/3 + 1/6 3/4 * 5/7. klasa 7 wyznaczanie proporcji,potrzebuje na jutro,daje naj.Na konkursie Beata uzyla 600g makaronu ,420g kapusty kiszonej,150 g kiełbasy i 30 g borowik …${1}^{6}=?$${1}^{6}$${1}$
1.Oblicz w pamięci : a) 4 2/7 + 5 5/7 = 3 5/9 + 7 8/9 = b) 4 3/4 - 1/2 = 6 3/4 + 2 1/2 = 2.Oblicz : a) 1 1/3 + 3/5 = b) 2 5/6 + 1 3/8 = c) 5/9 + 5/6 = d) 1 7/10 + 2
aricia Użytkownik Posty: 23 Rejestracja: 11 mar 2009, o 10:47 Płeć: Kobieta Podziękował: 12 razy Oblicz (ułamki) Zadanie banalne ale rozwiązanie wyszło inne niż jest w odpowiedziach i chciałabym żeby ktoś sprawdził czy to ja popełniłam błąd czy w podręczniku jest. 1)Oblicz: \(\displaystyle{ ( \frac{1}{4} - \frac{ \frac{1}{4} + \frac{1}{9} }{ \frac{1}{9} }):( \frac{2}{3} + \frac{ \frac{7}{15} }{ \frac{2}{5} - \frac{1}{6} } )}\) Mnie wyszło \(\displaystyle{ -1 \frac{1}{8}}\) W podręczniku \(\displaystyle{ -8}\) Następne zadania wychodzą tak jak w podręczniku ale nie potrafię ich rozwiązać inaczej niż "łopatologicznie" czyli pisemnie mnożąc i mnożąc i mnożąc... Jak można sprytniej? 2)Oblicz iloczyn: \(\displaystyle{ (1+ \frac{2}{3})(1+ \frac{2}{5})(1+ \frac{2}{7})(1+ \frac{2}{9})(1+ \frac{2}{11})(1+ \frac{2}{13})(1+ \frac{2}{15})(1+ \frac{2}{17})(1+ \frac{2}{19})}\) 3)Oblicz sumę: \(\displaystyle{ (1+ \frac{1}{2} )+( \frac{1}{2}+ \frac{1}{3} )+( \frac{2}{3} + \frac{1}{4} )+( \frac{3}{4} + \frac{1}{5} )+( \frac{4}{5} + \frac{1}{6} )+( \frac{5}{6} + \frac{1}{7} )+( \frac{6}{7} + \frac{1}{8})+ \frac{7}{8}}\) 4)Oblicz: \(\displaystyle{ 2000 \frac{7}{13} \cdot 2001 \frac{7}{13} -1999 \frac{7}{13} \cdot 2002 \frac{7}{13}}\) Jeszcze jedno zadanie. Kompletnie nie mam pojęcia jak sobie z nim poradzić a wygląda całkiem niegroźnie: 5)Rozwiąż równanie: \(\displaystyle{ 2 \frac{2}{3} ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)- \frac{7}{15} =0,2}\) Dochodzę do tego momentu (czyli bardzo niedaleko): \(\displaystyle{ \frac{8}{3} :3(((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)= 2}\) i na tym się kończą pomysły... I ostatnie. Nie wiem jak zapisać mój tok rozumowania (nie oczekuję, że wejdziecie mi do głowy , ale mam nadzieję, że zapiszecie swój, bo ja to po prostu rozwiązałam tak na poczekaniu w głowie i w ostateczności wyszła mi sama odpowiedź bez rozwiązania): 6)Mama chce rozlać \(\displaystyle{ 13kg}\) miodu do słoików, w których mieści się po \(\displaystyle{ 1 \frac{1}{2} kg}\) i \(\displaystyle{ 2 \frac{1}{2}kg}\). Ile słoików każdej wielkości musi przygotować? Wyszło mi 4 duże i 2 małe ale nie potrafię zapisać jak to obliczyłam. Poproszę publiczność o pomoc Ostatnio zmieniony 14 kwie 2009, o 10:56 przez aricia, łącznie zmieniany 1 raz. Brzytwa Użytkownik Posty: 879 Rejestracja: 1 wrz 2007, o 13:33 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 2 razy Pomógł: 221 razy Oblicz (ułamki) Post autor: Brzytwa » 14 kwie 2009, o 10:52 2) \(\displaystyle{ (1+ \frac{2}{3})(1+ \frac{2}{5})(1+ \frac{2}{7})(1+ \frac{2}{9})(1+ \frac{2}{11})(1+ \frac{2}{13})(1+ \frac{2}{15})(1+ \frac{2}{17})(1+ \frac{2}{19})=\frac{5}{3} \cdot \frac{7}{5} \cdot \frac{9}{7} \cdot \frac{11}{9} \cdot \frac{13}{11} \cdot \frac{15}{13} \cdot \frac{17}{15} \cdot \frac{19}{17} \cdot \frac{21}{19}=\frac{21}{3}=7}\) 3) \(\displaystyle{ (1+ \frac{1}{2} )+( \frac{1}{2}+ \frac{1}{3} )+( \frac{2}{3} + \frac{1}{4} )+( \frac{3}{4} + \frac{1}{5} )+( \frac{4}{5} + \frac{1}{6} )+( \frac{5}{6} + \frac{1}{7} )+( \frac{6}{7} + \frac{1}{8})+ \frac{7}{8}=1+ (\frac{1}{2} + \frac{1}{2})+ (\frac{1}{3} + \frac{2}{3}) + (\frac{1}{4} + \frac{3}{4} )+ (\frac{1}{5} + \frac{4}{5} )+ (\frac{1}{6} + \frac{5}{6}) + (\frac{1}{7} + \frac{6}{7}) + (\frac{1}{8}+ \frac{7}{8})=8}\) 4) \(\displaystyle{ 2000 \frac{7}{13} \cdot 2001 \frac{7}{13} -1999 \frac{7}{13} \cdot 2002 \frac{7}{13} = (1999 \frac{7}{13}+1)(2002 \frac{7}{13}-1)-1999 \frac{7}{13} \cdot 2002 \frac{7}{13} =1999 \frac{7}{13} \cdot 2002 \frac{7}{13} +2002 \frac{7}{13}-1999 \frac{7}{13}-1-1999 \frac{7}{13} \cdot 2002 \frac{7}{13}=3-1=2}\) 6) \(\displaystyle{ x}\)-liczba małych słoików, \(\displaystyle{ y}\)-liczba dużych słoików, \(\displaystyle{ x,y \in \mathbb{N}}\): \(\displaystyle{ 1,5x+2,5y=13}\) \(\displaystyle{ 3x+5y=26}\) 1)\(\displaystyle{ y=0}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=26}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x \notin \mathbb{N}}\) 2)\(\displaystyle{ y=1}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=21}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x =7}\) 3)\(\displaystyle{ y=2}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=16}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x \notin \mathbb{N}}\) 4)\(\displaystyle{ y=3}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=11}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x \notin \mathbb{N}}\) 5)\(\displaystyle{ y=4}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=6}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x=2}\) 6)\(\displaystyle{ y=5}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ 3x=1}\) \(\displaystyle{ \Rightarrow}\) \(\displaystyle{ x \notin \mathbb{N}}\) Tak więc mama może rozlać na \(\displaystyle{ 2}\) sposoby: \(\displaystyle{ 4}\) duże i \(\displaystyle{ 2}\) małe, oraz \(\displaystyle{ 1}\) duży i \(\displaystyle{ 7}\) małych. Ostatnio zmieniony 14 kwie 2009, o 11:11 przez Brzytwa, łącznie zmieniany 4 razy. aricia Użytkownik Posty: 23 Rejestracja: 11 mar 2009, o 10:47 Płeć: Kobieta Podziękował: 12 razy Oblicz (ułamki) Post autor: aricia » 14 kwie 2009, o 11:00 OK, dziękuję bardzo. Trzecie zadanie rozumiem i trochę mi wstyd, że sama na to nie wpadłam, ale nadal nie rozumiem jak Ty to tak skróciłeś do \(\displaystyle{ \frac{21}{3}}\) w drugim? edit. Czwarte i szóste też zrozumiałe. Teraz tylko chciałabym jeszcze wiedzieć co z 1), 5) i 2). Ostatnio zmieniony 14 kwie 2009, o 11:25 przez aricia, łącznie zmieniany 1 raz. Brzytwa Użytkownik Posty: 879 Rejestracja: 1 wrz 2007, o 13:33 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 2 razy Pomógł: 221 razy Oblicz (ułamki) Post autor: Brzytwa » 14 kwie 2009, o 11:15 2) \(\displaystyle{ \frac{5}{3} \cdot \frac{7}{5} \cdot \frac{9}{7} \cdot \frac{11}{9} \cdot \frac{13}{11} \cdot \frac{15}{13} \cdot \frac{17}{15} \cdot \frac{19}{17} \cdot \frac{21}{19}=\frac{5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19 \cdot 21}{3\cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19}=\frac{(5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19) \cdot 21}{3 \cdot (5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19)}=\frac{5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19}{5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19} \cdot \frac{21}{3}=\frac{21}{3}=7}\) 5) \(\displaystyle{ 2 \frac{2}{3} ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)- \frac{7}{15} =0,2}\) \(\displaystyle{ 2 \frac{2}{3} ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)=\frac{10}{15}}\) \(\displaystyle{ \frac{8}{3} ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)=\frac{2}{3}}\) \(\displaystyle{ 1 ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8)=\frac{1}{4}}\) \(\displaystyle{ ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6} +2,8=4}\) \(\displaystyle{ ((3,72-0,02x) \cdot \frac{10}{37} ): \frac{5}{6}=1,2}\) \(\displaystyle{ (3,72-0,02x) \cdot \frac{10}{37}=\frac{36}{25}}\) \(\displaystyle{ 3,72-0,02x=\frac{36 \cdot 37}{25 \cdot 10}}\) \(\displaystyle{ 372-2x=\frac{36 \cdot 37 \cdot2 }{5}}\) \(\displaystyle{ 186-x=\frac{36 \cdot 37}{5}}\) \(\displaystyle{ 186-\frac{36 \cdot 37}{5}=x}\) \(\displaystyle{ \frac{930-1332}{5}=x}\) \(\displaystyle{ x=-\frac{402}{5}}\) \(\displaystyle{ x=-80,4}\) 1)W pierwszym rzeczywiście wychodzi \(\displaystyle{ -\frac{9}{8}}\) aricia Użytkownik Posty: 23 Rejestracja: 11 mar 2009, o 10:47 Płeć: Kobieta Podziękował: 12 razy Oblicz (ułamki) Post autor: aricia » 14 kwie 2009, o 11:51 Dziękuję Już wszystko rozumiem. W 5) powinno wyjść \(\displaystyle{ 1}\) ale już znalazłam, wkradł Ci się mały błąd: \(\displaystyle{ (3,72-0,02x) \cdot \frac{10}{37} =1}\) \(\displaystyle{ 3,72-0,02x=3,7}\) \(\displaystyle{ x=1}\) Dziękuję jeszcze raz i pozdrawiam. edit. Mam jeszcze trzy pytania. 1)Przedstaw w postaci ułamków zwykłych: \(\displaystyle{ ( 4^{-2} :5 ^{-1} ) \cdot [2 ^{-3} : (\frac{5}{2} ) ^{-2} ]}\) Mnie wyszło \(\displaystyle{ \frac{5}{512}}\) W odpowiedziach jest \(\displaystyle{ \frac{125}{512}}\). Mój błąd? 2)Oblicz: \(\displaystyle{ (- \frac{10}{17}) ^{5} \cdot (- \frac{51}{2} ) ^{5} \cdot (- \frac{1}{15} ) ^{5}}\) Nie mam pojęcia jak się do tego zabrać. 3)Jak przekształcić \(\displaystyle{ 2 ^{55}}\) w \(\displaystyle{ 32 ^{11}}\)? slaweu Użytkownik Posty: 84 Rejestracja: 3 lut 2009, o 17:21 Płeć: Mężczyzna Pomógł: 19 razy Oblicz (ułamki) Post autor: slaweu » 14 kwie 2009, o 14:10 1. \(\displaystyle{ ( 4^{-2} :5 ^{-1} ) \cdot [2 ^{-3} : ( \frac{5}{2} ) ^{-2} ]= (\frac{1}{16}*5)* (\frac{1}{8}* \frac{25}{4})= \frac{125}{512}}\) Więc twój błąd 2. Rozpisujemy ładnie wszystko, potęgi się skracają i wszystko gra \(\displaystyle{ (- \frac{10}{17}) ^{5} \cdot (- \frac{51}{2} ) ^{5} \cdot (- \frac{1}{15} ) ^{5}=(- \frac{2*5}{17} ) ^{5}*(- \frac{3*17}{2} ) ^{5}*(- \frac{1}{3*5} ) ^{5} =5 ^{5}*(- \frac{2}{17} ) ^{5}*3 ^{5} *(- \frac{17}{2} ) ^{5} *(- \frac{1}{3} ) ^{5}*( \frac{1}{5} ) ^{5}=5 ^{5}*(- \frac{2}{17} ) ^{5}*3 ^{5}*(-\frac{2}{17} ) ^{-5}*(-3) ^{-5}*5 ^{-5}=-1}\) 3. \(\displaystyle{ 32=2 ^{5}}\) resztę się domyśl aricia Użytkownik Posty: 23 Rejestracja: 11 mar 2009, o 10:47 Płeć: Kobieta Podziękował: 12 razy Oblicz (ułamki) Post autor: aricia » 14 kwie 2009, o 20:30 Już rozumiem. Dzięki bardzo
. 325 177 614 494 748 781 350 406